Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication4
  4. Neural Speech Decoding during Audition, Imagination and Production
 
  • Details
Options

Neural Speech Decoding during Audition, Imagination and Production

Date Issued
01-01-2020
Author(s)
Sharon, Rini A.
Narayanan, Shrikanth S.
Sur, Mriganka
Hema Murthy, A. 
Indian Institute of Technology, Madras
DOI
10.1109/ACCESS.2020.3016756
Abstract
Interpretation of neural signals to a form that is as intelligible as speech facilitates the development of communication mediums for the otherwise speech/motor-impaired individuals. Speech perception, production, and imagination often constitute phases of human communication. The primary goal of this article is to analyze the similarity between these three phases by studying electroencephalogram(EEG) patterns across these modalities, in order to establish their usefulness for brain computer interfaces. Neural decoding of speech using such non-invasive techniques necessitates the optimal choice of signal analysis and translation protocols. By employing selection-by-exclusion based temporal modeling algorithms, we discover fundamental syllable-like units that reveal similar set of signal signatures across all the three phases. Significantly higher than chance accuracies are recorded for single trial multi-unit EEG classification using machine learning approaches over three datasets across 30 subjects. Repeatability and subject independence tests performed at every step of the analysis further strengthens the findings and holds promise for translating brain signals to speech non-invasively.
Volume
8
Subjects
  • Assistive technology

  • brain computer interf...

  • EEG

  • imagined speech

  • speech-EEG correlatio...

  • unit classification

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback