Options
Controllable Defect Engineering in 2D-MoS<inf>2</inf>for high-performance, threshold switching memristive devices
Date Issued
01-01-2022
Author(s)
Thool, Asmita S.
Roy, Sourodeep
Indian Institute of Technology, Madras
Indian Institute of Technology, Madras
Abstract
Two-dimensional (2D) materials and their hetero structures are promising for memristive applications due to their extreme scalability and high performance.1 Threshold switching in 2D-Transition Metal Dichalcogenide (TMDC) memristors has been previously identified for neuromorphic applications.2 On the other hand, accurate control of defect concentration in 2D-TMDC films is necessary for optimized performance of the memristive devices. In this work, we explore a chemical route to control defect concentration in 2D-MoS2 films. We demonstrate that the defect concentration in 2D-MoS2 can be tuned by H2O2 treatment. We then optimize the resistance switching behavior of Au/MoS2/Ag/Au memristors to obtain reliable threshold resistance switching with high on/ off ratio, low operating voltages and self-compliance behavior. This work offers promise for a low-cost, scalable approach to develop 2D-TMDC based high-performance neuromorphic hardware.
Volume
2022-June