Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication4
  4. Piezoresistive behaviour of graphene nanoplatelet (Gnp)/pmma spray coated sensors on a polymer matrix composite beam
 
  • Details
Options

Piezoresistive behaviour of graphene nanoplatelet (Gnp)/pmma spray coated sensors on a polymer matrix composite beam

Date Issued
01-11-2019
Author(s)
Sethy, D.
Makireddi, S.
Varghese, F. V.
Balasubramaniam, K. 
Indian Institute of Technology, Madras
DOI
10.3144/expresspolymlett.2019.88
Abstract
Graphene nanoplatelet (GNP)/poly(methyl methacrylate) (PMMA) nanocomposite solution was spray coated on a glass fibre reinforced polymer composite (GFRP) beam with different initial electrical resistance (R0). Scotch tape erosion method was used to tailor the R0 of the sensors. Beams and the sensors were characterized by computed tomography (CT) and scanning electron microscopy (SEM) respectively. The piezoresistive behaviour of these sensors was evaluated in monotonic, step and cyclic loading conditions. These spray coated sensors offered good sensitivity (38.5 times) as compared to a strain gauge. A gauge factor (GF) of 55±0.5, 70±2, and 77±1 was obtained for R0 of 1, 7 and 21 kΩ GNP layers, respectively. Sensors showed good response and stability under the step and cyclic loading conditions. The ease in the process of application coupled with good sensitivity demonstrates that the GNP/PMMA spray coated sensor can be a potential candidate for the futuristic multi-functional materials for structural health monitoring.
Volume
13
Subjects
  • Coating

  • Graphene

  • Nanomaterials

  • Piezoresistivity

  • Polymer composites

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback